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Abstract
We review some recent advances in the rheology of two-dimensional liquid foams, which
should have implications for three-dimensional foams, as well as other mechanical systems that
have a yield stress. We focus primarily on shear localization under steady shear, an effect first
highlighted in an experiment by Debrégeas et al. A continuum theory which incorporates wall
drag has reproduced the effect. Its further refinements are successful in matching results of
more extensive observations and making interesting predictions regarding experiments for low
strain rates and non-steady shear. Despite these successes, puzzles remain, particularly in
relation to quasistatic simulations. The continuum model is semi-empirical: the meaning of its
parameters may be sought in comparison with more detailed simulations and other experiments.
The question of the origin of the Herschel–Bulkley relation is particularly interesting.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Precisely how do foams flow? This question was posed
in a review article by Kraynik at the outset of the modern
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Figure 1. Recent progress in foam rheology was instigated by
experiments with two-dimensional foams, obtained for example by
squeezing foam between two glass plates, as in this photograph.

development of the subject [1]. It is of direct practical
relevance to industry, and a useful focus of attention in the
study of basic rheology. A liquid foam can stand as a prototype
for a wide class of substances—those that have a yield stress,
behaving as solids under low stress and liquids under high
stress. They include many pastes, powders, suspensions, gels
and emulsions. These are generally disordered aggregates of
individual entities (particles, droplets, bubbles). They may be
called Bingham fluids, by reference to a particular (and rarely
accurate) theoretical representation of their dual solid/liquid
character.

The particular appeal of foam lies in its clearly defined
and simple local structure, whose rearrangements under shear
may be straightforwardly characterized. It may be realized,
visualized and simulated with relative ease. All of this is
especially true of a two-dimensional foam, a single layer of
interacting bubbles, as shown in figure 1. Such a foam may
be formed in various ways; it is sometimes important to
distinguish between them. It may be prepared by trapping the
bubbles between two plates, or by letting them float on liquid,
with or without a confining plate on top. These alternatives are
illustrated in figure 2.

The first of these options (figure 2(c)) was popularized
by Smith [2]. He was originally motivated by a study of
grain growth in metals. The freely floating foam (figure 2(a))
is Bragg’s soap raft, which he introduced as a model for
atomic arrangements in crystals [3]. The intermediate option
(figure 2(b)) was introduced by Earnshaw [4] and by Vaz and
Fortes [5].

Of course, as figure 2 makes plain, none of these foams is
truly two-dimensional; nevertheless 2D models often suffice
to describe their properties. Particularly when statics (or
quasistatics) is all that is at stake, the differences between
the three kinds of 2D foam sample may often be disregarded.
However, that does not appear to be the case for 2D foam
rheology, which is the topic of this review. It matters a great
deal whether a confining plate is present as in figures 2(b)
and (c).

Figure 2. Three types of 2D foams: (a) monolayer of air bubbles
sitting at an air/liquid interface (Bragg raft); (b) bubbles floating in
liquid under a glass plate; (c) bubbles confined between two glass
plates. There are large effects due to the drag associated with motion
relative to solid boundaries in both (b) and (c).

At the end of a book that summarized what was known
about basic foam properties up to the year 2000, Weaire
and Hutzler emphasized that dynamic properties were very
important, yet hardly understood at all [6]. Since that
time several groups have made important initial contributions
to foam rheology. They include among others the groups
associated with Durian [7–9], Cantat [10–12], Graner [13–17]
and Vandewalle [18], who have provided a wealth of examples
of 2D foam flow and models that represent it. Models of
bubble–bubble interactions with relevance also to 3D were
developed in the group of Denkov [19–21].

With benefit of hindsight, one may see that an attack on
dynamical problems could have been pursued in 2D foams
much earlier. It was inhibited by a vague sense that the 2D
foam might not correspond well to the 3D foam whose analysis
was the ultimate goal. This doubt is quite reasonable, as we
shall see: nevertheless it is possible to learn a great deal from
the 2D case, if it is properly understood.

In 2001 the subject was brought to a sharp focus in
an experiment by Debrégeas et al [22]. A monolayer of
bubbles, confined between two plates (as in figure 2(c)),
was introduced in a 2D cylindrical Couette viscometer (as
sketched in figure 3(a)) of an original design. The phenomenon
highlighted by the experiment was shear localization, or shear
banding. When the inner cylinder was rotated, the associated
shearing motion of the bubbles was restricted to a narrow
region close to it. With the benefit of hindsight one may discern
something similar in earlier work, but here it was clearly
exposed and quantified, demanding explanation. The ensuing
debate has drawn in several experimental and theoretical
groups, and has reached such a stage that the present topical
review is justified. That is to say, much is now understood
and rich detail has been revealed, but the problem remains
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Figure 3. The two types of experimental set-ups under consideration
in this review article: (a) a circular (Couette) geometry and (b) a
straight geometry. The arrows indicate the boundaries one or more of
which may be displaced during an experiment or computer
simulation to induce shear.

fascinating, in that a final resolution can hardly be said to have
been reached. What might have seemed a simple matter has
proved to be deep and wide, causing a re-examination of foam
rheology at a fundamental level. There are no further published
results from the Debrégeas instrument, but a wealth of further
data has emerged from other groups, as reviewed in section 3.

Some of the main theories that are currently advanced for
localization and the underlying dynamical theory arise out of
the work of the Dublin [23–27] and Leiden [28–30] groups.
This body of work, based on a continuum approximation,
is not yet reconciled with alternative descriptions based
on quasistatic simulations by Kabla et al [31–33] and the
Aberystwyth group [34–36]. Our first objective is to put the
contributions of the Dublin and Leiden groups in the simplest
complete and coherent form, as a basis for continued debate.
We will, however, adduce some detailed simulations, in which
the individual bubbles are represented, in an attempt to better
understand the continuum model.

We begin by comparing 2D and 3D foams in order to
introduce wall drag, the force that resists motion relative to a
confining plate. We will later see that the introduction of wall
drag has the general consequence of shear localization, with
various forms and dependences, according to the particular
case. It is therefore a crucial factor in interpreting shear
localization experiments.

We will also briefly review the experimental comparisons
that can be made. They largely validate the theoretical model,
but additional confirmation will surely be needed, as well as
further refinements of the theory.

Throughout the review we will mainly use the term shear
localization, rather than shear banding. The latter term is
familiar in materials science, but usually refers to localized
bands of shear within the sample, whereas in the present case
it is to be found only at a boundary. This distinction may be a
mere matter of taste, but we prefer to avoid the connotations
of the alternative expression. A more general and in many
respects complementary review of ‘Shear Bands in Matter with
Granularity’ has been recently compiled by Schall and van
Hecke [37].

A further type of localized deformation is possible in solid
foams. Here, compression might lead to the collapse of a cell
which either has a lower collapse stress or is subject to a locally
higher stress [38]. This cell collapse might then propagate

to cells in its vicinity, resulting in a compaction band where
the cellular structure has an increased local density. Since
this review article concerns liquid foams (where the gas in
the bubbles can be treated as incompressible) only we will not
discuss such bands.

In planning our article we faced what might be called ‘the
reviewer’s dilemma’. If a subject is to be reviewed in the midst
of its progress, all sorts of loose ends, untested assumptions
and questionable generalizations will be found. On the other
hand, if we wait until all is clear, it may have become stale and
uninteresting! Certainly the present review falls into the ‘work
in progress’ category, and criticism will be very welcome.

We shall first review all of the main experiments
and their essential results, before embarking on theoretical
interpretations.

2. The experiment of Debrégeas, Tabuteau and di
Meglio

In 2001 Debrégeas et al noted that, whereas localized shear
in granular material and soil mechanics ‘has recently received
a lot of attention from physicists [· · ·] a clear picture has not
emerged yet’ [22]. They chose to work on 2D foams in the
belief that ‘foams may shed light on the dynamics of granular
systems by evidencing the minimal set of ingredients needed to
get shear banding’ [22]. The relationship of what is reviewed
here to corresponding studies of granular systems is indeed a
fascinating topic. We will comment on it only very briefly in
section 16.

The apparatus consisted of a 2D circular Couette
rheometer in which foam was confined between two glass
plates (as in figure 2(c)). The outer to inner radius ratio was
122/71 mm, but note that the shear band that was eventually
measured had a width of only a few millimetres. This is why
the experiment can be considered equivalent to one in which
simple shear is imposed and the circular geometry (which leads
to a r−2 stress decay when under strain) can often be ignored,
as is the case here.

The bidisperse foam was confined between plates with a
separation of 2 mm, and the resulting 2D bubbles had diameters
only slightly greater than this (bubble diameter 2.0 ± 0.2 mm
and 2.7 ± 0.2 mm, respectively).

The inner circle was a movable wheel, which was rotated
to impose a steady velocity of up to V = 0.7 mm s−1 at
the boundary of the foam. It was reported that within this
range ‘the velocity profiles were similar apart from an overall
scale factor’ [22], presumably meaning that the profile did not
change apart from being proportional to the boundary velocity.
This is an important comment: later contributors were to point
to significant velocity dependence in their respective data, and
we shall return to this matter in due course. The actual data
that was reported for the original experiment was for V =
0.25 mm s−1 (Debrégeas et al referred to this as the quasistatic
regime). Accordingly the shear rates in the steady state were of
the order of 0.1 s−1 within the shear band, since its width was
of the order of a few millimetres.

Video sequences, which were kindly made available to
other groups1, showed the process by which localization of
1 http://tel.archives-ouvertes.fr/docs/00/04/56/98/HTML/Manip.mpg—we
thank A Kabla for this link.
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Figure 4. Measured velocity distributions in the original experiment
by Debrégeas et al for Couette geometry [22]. The three different
symbols mark datasets obtained for different liquid fractions. The
inset shows the variation of the localization length with liquid
fraction. Reprinted figure with permission from Debrégeas [22].
Copyright 2001 by the American Physical Society.

shearing motion developed at the inner boundary, but in taking
data this transient regime was avoided by allowing a full
rotation before making measurements. This initial preparation
corresponded to a nominal shear of the whole sample, the
magnitude of which was roughly 5, and an even greater value
within the region of localized shearing motion that becomes
established during the rotation.

The velocity profile associated with shear localization at
the moving inner boundary was consistent with an exponential
form (over three orders of magnitude), that is

v(x) ∝ exp(−x/ l), (1)

as shown in figure 4, where x is the distance from the moving
boundary (denoted as r in figure 4). Here l (represented by λ in
the notation of these authors) is the localization length and is
the main object of qualitative and quantitative scrutiny in most
of the present article, although it will not always be associated
with an exponential profile.

Debrégeas et al went on to present the variation of l
with liquid fraction φ of the foam. The liquid fraction is
difficult to estimate or even define satisfactorily in the present
context [39]; we shall not take up this aspect of the results.
Correlations of bubble motions were also analysed.

Setting these matters aside, we may summarize some basic
findings of the paper as follows.

• There is localization at the moving boundary.
• The velocity profile has an exponential form.
• The localization length was said to show no variation with

boundary velocity within the range of velocities that was
used.

3. Later experiments

To our knowledge, no further data has yet been reported
based on the use of the particular apparatus described in
the last section. Instead, various other set-ups have been
employed for the same purpose, namely by the groups of
Dennin and van Hecke at the Universities of California-Irvine

and Leiden, respectively. Here we will note the nature of
these experimental variations, together with some of the key
findings. A more detailed interpretation of the data is left to
later sections, when its implications will be clearer.

Changes in sample geometry (from Couette to simple
shear), boundary conditions and other technical details are not
generally important, but the change of foam type (among the
three options of figure 2) certainly is.

3.1. Experiments by Dennin’s group using a straight geometry

For a straight geometry the group of Dennin found that,
whereas shear is not localized in the case of a Bragg raft
(figure 2(a)), strong localization at the moving boundary occurs
when the raft is covered by a glass plate (figure 2(b)) [40].
In this second case the localization length was found to be
approximately three average bubble diameters, independent of
the velocity of the moving boundaries. (Since the applied
strain rates were 0.0014, 0.0028 and 0.014 s−1 one can deduce
local strain rates between 0.005 and 0.05 s−1 for the sheared
regions.)

The foam samples in the above experiments were nearly
monodisperse (bubble diameters in the range 2.43 ± 0.08 mm)
and the photo of a sample shows that the bubbles crystallize
in various domains (see figure 3 of [40]). This appears
to be the main contributing factor for the observed velocity
independence of localization length in the sheared covered
bubble raft. A similar behaviour for monodisperse foams
was found in the experiments of the Leiden group ([28] and
section 3.3) and also in dynamic computer simulations of the
viscous froth model (section 12.3).

3.2. Experiments by Dennin’s group using Couette geometry

Dennin’s group performed further series of experiments using
a Couette geometry with moving outer cylinder and bubbles
in covered [44] and uncovered Bragg rafts [45, 42, 44]
(figures 2(b) and (c), respectively). Here the range of bubble
diameter was larger than in the above experiments [40] and the
issue of crystallization should thus not arise.

Of particular relevance to the continuum theory of
localization (and indeed in part inspired by this theory) are
the experiments carried out in 2008 for both bubble raft and
covered bubble raft in a Couette geometry with a radius ratio
of 80/22.5 mm [44]. For the bubble raft it was found that
shear localizes at the inner boundary as the outer boundary
was rotated. The localization length was approximately
3.5 mm, independent of rotation velocity. For the covered
bubble raft the localization length was found to increase with
boundary velocity, from about 3 mm to about 4.5 mm. (These
widths were extracted from fits of the velocity profiles to
exponentials.) Increasing the boundary velocity eventually led
to the formation of a second shear band at the outer (moving)
boundary. Its width was found to decrease with velocity, from
about 16 to 6 mm.

The occurrence of a second shear band had been predicted
by Clancy et al [24] from numerical solutions of the continuum
model in circular geometry. The possibility of a shear band
at the outer moving cylinder was also demonstrated by the
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Figure 5. Data from the Dennin group showing shear localization in
the case of circular (Couette) geometry (reprinted figure 5
from [41]). The scaled azimuthal steady-state velocity v(r)/(r�),
where r is the radial position and � is the rotation rate of the outer
cylinder, may become constant at some internal point. In the data
of [42, 43, 41], taken for a moving outer boundary and a fixed inner
one, there is a discontinuity of d(v(r)/(r�))/dr at this point.
Note that this published figure uses the symbol v(r) to denote
v(r)/(r�) in the notation of the present paper. The solid and dashed
lines show least-squares fits to power law and exponential,
respectively. This figure is used with permission from Dennin [41],
copyright 2008 by IOP Publishing Ltd.

dynamic viscous froth simulations of Cox for sufficiently
high shear rates [34]: for lower rates, and also in quasistatic
simulations, he found that localization occurs at the inner, fixed
boundary.

The full scenario for Couette geometry is rather rich [24],
but in terms of physical interpretation it adds little to the
simple shear experiments upon which we concentrate in this
review. But one feature of the results, associated with the
edge of the rigidly rotating region, is intriguing. The velocity
profiles in Dennin’s experiments on bubble rafts in Couette
geometry show that the derivative of the profile with respect
to radial position is discontinuous at the radial position that
separates rigid body motion from shear flow [42, 43, 41]; see,
for example, figure 5. We will discuss the implications of this
for a refinement of the continuum theory in section 10.

Figure 7. Variation of the localization length lint with wall velocity V
in the Leiden experiments on bidisperse foams [28]. The data is well
described by a power law, lint ∝ V −0.20, where lint is computed from a
numerical integration of the measured velocity profiles, see
equation (26). The different symbols correspond to different values
for the distance between the counter-rotating wheels. This figure was
kindly provided by Möbius of the Leiden group.

3.3. Experiments of the Leiden group

In yet another variation, the group at Leiden experimented
with a bidisperse bubble monolayer (equal number of bubbles
with diameters 1.8 and 2.7 mm, respectively) on top of a
liquid pool and covered by a glass plate (2D foam type (b) of
figure 2) [28]. The distance between liquid surface and glass
plate was 2.25 mm. The geometry of the set-up was straight;
parallel boundaries were moved at constant speed in opposite
directions by two counter-rotating acrylic glass wheels, placed
perpendicular to the plane of the bubble monolayer. Six
different velocities were used, ranging between 0.026 and
8.4 mm s−1. Shear localization at the two boundaries was
found to increase with velocity, as is evident in figure 6. From
the data shown one can estimate the range of applied shear rate
in the respective shear bands as roughly 10−3–0.5 s−1.

The variation of the localization length with boundary
velocity was not explicitly shown in the original publication
[28]. It has since been computed by Möbius using
equation (26) and is shown in figure 7. The localization length
decreases with wall velocity in the form of a power law with

Figure 6. The Leiden experiment [28]. (a) A monolayer of foam is confined between a liquid pool and a covering glass plate. (b) Localization
takes place close to the moving boundaries, the localization length decreases with boundary velocity. Reprinted figures with permission from
van Hecke and [28]. Copyright 2008 by the American Physical Society.
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Table 1. Relevant detailed experiments of two-dimensional foam
under shear. Categorization is by geometry and experimental set-up.
Experiments where localization length is found to depend on
boundary velocity are marked with an asterisk (*).

Summary of experiments on shear localization

Geometry Reference Localization At boundary Distribution

Hele-Shaw (wall drag)

Circular [22] Yes Inner moving Bidisperse

Confined Bragg raft (wall drag)

Straight [40] Yes Moving monodisperse
[28] Yes Moving Monodisperse
[28] Yes* Moving Bidisperse

Circular [44] Yes* Inner stationary,
outer moving

Polydisperse

Bragg raft (no wall drag)

Straight [40] No — Monodisperse

Circular [45] No — Tridisperse
[42] Yes Inner stationary Polydisperse
[43] Yes Inner stationary Polydisperse
[44] Yes Inner stationary Polydisperse

exponent −0.2. We will interpret this value in section 8 in
terms of the continuum model.

It is noteworthy that no such velocity dependence was
found in the experiments of the Leiden group when using
monodisperse bubbles, which are more or less ordered, in
contrast to the disordered arrangements of bidisperse or
polydisperse samples. In this case the localization length was
between one and two bubble diameters, independent of the
shear rate. This matches the result of Dennin’s group [40] for
similar experimental conditions.

3.4. Summary of experimental results

Table 1 summarizes the experiments and their essential results,
as regards localization. As we have seen, experimental
variations include the type of 2D foam (figure 2) and
the distribution of bubble sizes (monodisperse, bidisperse,
polydisperse), the geometry of the experiment (straight or
Couette geometry) and the shear rates used.

4. Towards a theory: are 2D foam properties really
similar to those of 3D foam?

We begin theoretical deliberations with the above question.
When the answer is yes, this offers us one of the great
simplifications of the qualitative and semi-quantitative physics
of foams, extending to such subjects as structure, coarsening,
elasticity and plasticity [6]. It has become almost an article of
faith, but has proved misleading for rheology.

The point is simply that in most cases (including that of the
seminal experiment of the Debrégeas group [22]), the 2D foam
is in contact with a solid plate. This does not matter much for
static properties, but when the foam flows it entails a resisting
force at the surface, which we shall here call wall drag. We

shall argue that this can play a primary role in causing shear
localization.

Wall drag has absolutely no counterpart in the bulk
rheology of 3D foam, so it injects an essential difference into
the 2D case, whenever it is present. It cannot be relevant to
shear localization in three dimensions, which is sometimes
seen. We shall have very little to say on that matter in the
present article.

Wall drag is, in our view, essential to the analysis of shear
localization in 2D, in general. There are therefore two essential
ingredients to be combined in a theory: some description of the
internal forces or local rheological response of the foam, and
the external drag force whenever this is present. It is absent, at
least to a first approximation, in the experimental 2D system of
figure 2(a), but present in the other 2D foam types.

In the elementary continuum theory, it turns out that the
localization length is determined by a competition between
the internal dissipative forces (which tend to delocalize shear)
and the external ones (which tend to enhance localization).
The main theme of this article is the continuum theory that
expresses this competition. By its nature it cannot capture
all of the physics but, in as much as it proves to be valid,
it illuminates the subject in simple terms and makes definite
predictions.

Mention should be made of an important development in
the rheology of 3D foams, which may well have a bearing
in the context of the present review, but this remains to be
worked out and confirmed. Goyon et al [46] have interpreted a
range of rheological experiments on different length scales as
conclusively demonstrating nonlocal effects in the relationship
between stress and strain rate. This nonlocality arises from
the nonlocal character of rearrangements, which can give
rise to cascades of similar events in their vicinity. In these
experiments the extent of the nonlocality is considerable,
extending to five or more bubble diameters. These are 3D foam
experiments, but there seems no reason why their implications
should not extend to 2D foams as well (see further discussion
in the concluding section 17).

5. Simulations showing shear localization

The complementary approach of detailed simulation instead of
a continuum description has played an important role from the
outset. In this, the detailed motion of the soap films (or other
elements representative of 2D foam structure) are followed.
In such a simulation the role of the local rearrangements (T1
processes) of cells can be analysed, whereas it is buried in the
empirical parameters of the continuum model.

The first theoretical analysis of the Debrégeas experiment
was based on such a 2D simulation [31] in which a 2D
foam was fully represented by lines (cell walls), vertices,
cell pressures, etc, in a tradition dating back (at least)
to the 1980s [47–49]. Two key aspects distinguish that
approach from the main one considered in this article. Firstly,
these simulations (and various later ones [32, 33, 35]) were
quasistatic, that is, they proceeded by a sequence of small
changes in the boundary conditions (to represent an imposed
shear), equilibrating the structure at every step. No finite shear
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Table 2. Relevant detailed simulations of two-dimensional foam under shear. Categorization is by geometry and the presence or absence of
wall drag. Simulations where localization length is found to depend on boundary velocity are marked with an asterisk (*). Note also that many
of the much earlier (1980s and 1990s) simulations applied only extensional shear to the sample [49, 51–54], rather than the simple shear for
which localization has been observed.

Summary of simulations on shear localization

Geometry Reference Model Localization At boundary Distribution

With wall drag

Straight [27] Soft disk Yes Moving Monodisperse
[27] Soft disk Yes* Moving Polydisperse
[50] Viscous froth Yes Moving Monodisperse
[50] Viscous froth Yes* Moving Polydisperse

Circular [34] Viscous froth Yes Outer moving Polydisperse

Without wall drag

Straight [27] Soft disk No — Polydisperse
[31] Quasistatic Yes Moving, stationary Polydisperse
[33] Quasistatic Yes Moving, stationary Polydisperse
[35] Quasistatic Yes Moving, stationary, bulk Polydisperse

Circular [34] Quasistatic Yes Inner stationary Polydisperse

rate is defined. Secondly, they did not include wall drag, which
seems to have no place in the quasistatic method.

It follows that, in a quasistatic simulation, Galilean
invariance applies: precisely the same procedure should be
applicable to the dynamics of the system in any reference
frame. In simple shear, the imposition of a velocity V at one
top boundary should be entirely equivalent to the imposition of
velocity −V at the opposite boundary (with zero velocity at the
other boundary in each case). If localization is to be found, it
ought to occur at either boundary with equal probability. This
does not appear to occur in the reported results. However, in
the quasistatic simulations of [55], up to an applied strain of
5, the localized region is seen to slowly move between the
boundaries, maintaining a roughly constant width. This might
be indicative that in the quasistatic case localization is possible
at both boundaries.

It is possible to introduce finite velocities and wall drag,
by use of the 2D viscous froth model [56, 50] (see section 12),
or the soft disk model [27] (see section 13), but it cannot play
any role in a quasistatic simulation. Any such simulation (or
continuum model) that includes a wall drag has a preferred
frame of reference (that in which the confining plate is
stationary) and Galilean invariance does not apply. Indeed
we would insist that, in such cases, simple shear must lead to
localization at the moving boundary, for the case of a straight
geometry, see figure 3(b).

In table 2 we list relevant features and results for a
variety of different detailed simulations. Viscous froth and
the soft disk model will be described in sections 12 and 13,
respectively, and the results of these simulations will be
interpreted in terms of the continuum model which we now
develop.

6. Continuum theory

That localization was found at all in the quasistatic simulation
of simple shear [31] will initially constitute a paradox from the

point of view of the present article (since there is necessarily no
role for wall drag in such a simulation and we cannot attribute
localization to this cause). We will not attempt to resolve
it until section 10. In the meantime we pursue the course
of continuum theory with wall drag, as outlined already. In
this we deal with local averages of stress, strain, strain rate
and related quantities, rather than the description of individual
bubbles or cells. The boundary velocity V is a key parameter,
in contrast to quasistatic treatments whose results are, by their
very nature, V -independent.

This smoothed average picture must be questioned
whenever the localization length becomes so small as to be
comparable with bubble size, or according to the recent ideas
of Goyon et al [46], the range of nonlocal effects. But it
seems to have a wide range of validity and is, of course, a
great simplification. The continuum theory was formulated for
disordered foams. While we reported to monodisperse foam
experiments and simulations, the present theory should not be
taken to apply to them.

6.1. Wall drag

In such a picture, the local drag force at any point �r in the
moving foam contributes a body force (per unit area) �Fd(�r)

which is taken to be a function of local average velocity �v(�r):

�Fd(�r) = −cd|�v(�r)|b �v(�r)

|�v(�r)| , (2)

with a positive drag force coefficient cd. That is, the magnitude
of the drag force is proportional to the local speed raised to the
power b and acts in direct opposition to the local velocity of
the foam.

Given a power law for the drag force on one of the lines
(cell walls) of figure 1, it is obvious enough how to average it
to obtain such a formula; in particular, the index b is the same
for the local force and the average. This index is not found to
be unity as one might expect, and usually takes much lower
values [57, 19], as explained in section 15.
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SY

SL

Figure 8. Quasistatic local stress–strain relation with distinct yield
and limit stresses, for steadily increasing strain.

SY

Figure 9. Simplified model form (expressed by the function f in the
text) for a monotonic quasistatic stress–strain relation, for steadily
increasing strain. No distinction is made between yield and limit
stress. The functional form illustrated is that of the tanh(x) function.

Since the average bubble motion is fixed by the direction
of applied shear, we will in the following use the scalar form
for the drag force (per unit area), which may be written (for
positive velocity v, in the y direction, as in figure 10) as

Fd(x) = −cdv(x)b. (3)

This is the first and crucial ingredient of the continuum theory.

6.2. Constitutive relation

The second ingredient is a local constitutive relation, relating
averaged local stress, strain and strain rate. It is a traditional
concept, but entails many questions and difficulties, in general.

First let us remind ourselves of the local response of
a foam (3D or 2D) to slowly and steadily increasing shear
(‘quasistatic conditions’). It is sketched in figure 8.

For low stress or strain the foam is a linear elastic medium.
In the opposite limit, as strain goes to infinity, the stress is
constant. In what follows, the system will often be in the latter
regime, tending to an eventual steady state in which the system
is continuously sheared. Usually we shall not be concerned
with the earlier transient regime.

In the model that we are developing, it is often convenient
to neglect small differences between yield stress SY and limit
stress SL indicated in figure 8, which are in practice of the
order of 10% of SY [58, 50]. Considerable simplification is

achieved in replacing the curve by a monotonic dependence of
stress on (steady) strain, as in figure 9. Adopting this approach,
the symbol SY stands for both yield and limit stress, treated as
identical, at least for now.

All this refers to the local imposition of quasistatic steady
strain. At finite strain rates an additional stress is entailed,
which we may loosely term the ‘viscous’ stress. It increases
with strain rate, but not usually in a simple linear form.

This additional stress is captured in the empirical
Herschel–Bulkley relation. It is familiar in the long history of
rheometry applied to 3D foams, much of it driven by industrial
applications. The analysis of experimental rheological data for
foams and analogous systems has been highly empirical, and
has usually rested on the formalism of this relation [59]. It is
just a power law dependence of the excess stress S − SY on
strain rate γ̇ , for the steady shear that occurs above the yield
stress SY:

S = SY + cvγ̇
a . (4)

Here cv is the coefficient of the viscous contribution to stress,
also called consistency.

Often in the present article, shear is generally taken to
denote local simple shear (for the somewhat subtle distinction
between simple and extensional shear see [38]). The
experiments cited all involve local simple shear but the overall
macroscopic geometry of the rheometer may be straight (see
figure 3(b)) or circular (Couette, see figure 3(a)).

If the Herschel–Bulkley exponent a is unity, equation (4)
may be called the Bingham relation [59]. This is rarely
observed but may be useful for qualitative considerations.
Instead the exponent generally takes a value significantly less
than unity.

The experiments with which we are concerned mostly
involve the imposition of steady shear in one sense only. For
this case one may choose to replace equation (4) by the more
general relation

S = SY f (γ /γY) + cvγ̇
a, (5)

which is not confined to the steady shear state into which the
system eventually settles, under an imposed strain γ > γY

(γ denotes strain and γY may be called the yield strain). The
first term on the right-hand side represents the dependence
sketched in figure 8 or figure 9. This relation can be used for
any imposed stress (usually constant here), such that γ̇ > 0.
That is, the direction of shear cannot be reversed without
modification of equation (5).

At low strain γ , the function f (γ /γY) increases linearly
with strain and represents the (scaled) elastic stress in the linear
elastic regime. In much of the work reviewed here, the function
f was given a specific form such as that of the hyperbolic
tangent (figure 9).

Eventually we will have cause to revisit this simplification
in search of the effects of the peak in figure 8.

An obvious question is: how can we account for the
observed values of a? Does it reflect a corresponding
dependence of local forces on local velocities? Or does it have
some deeper significance? Such questions were raised in an
earlier brief review [60] and part of the justification for the

8
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Figure 10. Sketch of velocity profile v(x) for a straight geometry
(see figure 3(b)). The foam is moved at the boundary x = 0 with
velocity V and is stationary at the boundary x = L .

present one is the availability of some answers, but we will
delay this discussion until section 14.

To summarize, our initial viewpoint is very restrictive and
may be contrasted with that of theories that seek to develop a
theory for any arbitrarily varying imposed stress as a function
of time, and more complicated geometries. Ultimately, such
generality will be essential, but in the specific debate over
localization it is probably unhelpful, since it would bring in
an unwieldy mass of mathematical formalism.

7. Detailed results for the continuum model

The properties and predictions of the continuum model have
been analysed in a series of papers [23–26, 28, 30, 61]. Its
main implications may be summarized very straightforwardly,
provided that we adhere to the restrictions already suggested,
and in particular:

• confine attention for the present to the case in which
simple shear is imposed, rather than the circular or
cylindrical geometry of the original experiment [22], for
which it was often justifiably claimed that the geometry
had little effect. (We refer to this circular case as ‘Couette’
geometry.)

• Set aside for the moment the detailed discussion of
transient effects, that is, the evolution of motion towards
the eventual steady state.

• Make further approximations consistent with strong
localization, that is, localization with a scale much less
than that of the sample geometry. This means that the
immobile boundary plays little role when the other is set
in motion.

None of these simplifications are strictly required to
progress the analysis but together they reduce the mathematics
to a minimum, with no distracting diversions.

We consider a steady state of simple shear, with an average
profile v(x), as in figure 10, and will quickly show that it is
localized, as illustrated.

7.1. The continuum model equation

The 2D foam is sheared by the imposition of motion at one
boundary at x = 0 with velocity V , while at the other, at
x = L, it is stationary (and for present arguments L will

Figure 11. Forces per unit area acting on an element of a 2D foam
under shear. (Note that in 2D stress has dimensions of force per
length.)

be taken to infinity). The local strain rate is given by γ̇ =
|dv(x)/dx |.

Neglecting inertia and hence equating the total force on an
element to zero (as sketched in figure 11), the balance of the
two forces on the element (arising from the Herschel–Bulkley
relation (equation (5))) and wall drag (equation (3)) results in

SY
d

dx
f (γ /γY) + cv

d

dx

∣
∣
∣
∣

d(v(x))

dx

∣
∣
∣
∣

a

= −cd(v(x))b. (6)

Restricting ourselves to a discussion of the steady state at
long times, for which f tends to a constant everywhere, the
above equation is reduced to

cv

cd

d

dx

∣
∣
∣
∣

dv(x)

dx

∣
∣
∣
∣

a

= −v(x)b. (7)

We will now introduce dimensionless velocities v̂(x),
defined by

v̂(x) = v(x)

V
(8)

leading to the boundary condition v̂(0) = 1. Thus equation (7)
is reduced to

k
d

dx

∣
∣
∣
∣

dv̂(x)

dx

∣
∣
∣
∣

a

= −v̂(x)b, (9)

where the (positive) parameter k is given by

k = cv

cd
V a−b. (10)

It contains the only dependence of the (scaled) equation on the
velocity V of the moving boundary. In the following we shall
proceed to solve for the steady-state profile v̂(x) that is our
concern.

Equation (9) relies on the assumption (consistent with the
eventual solution given below) that everywhere dv̂

dx is negative
and v̂ is positive. This avoids the complications of hysteresis
when dv̂

dx is reversed [62].

7.2. Solutions of the continuum model equation: velocity
profiles

Often equation (9) is to be solved under the boundary
conditions

v̂(0) = 1 and v̂(L) = 0. (11)

9
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Figure 12. Velocity profiles illustrating the three distinct cases a < b
(power law), a > b (truncated power law) and a = b (exponential),
where a and b are the respective exponents in Herschel–Bulkley and
viscous drag relation.

However, if the profile is localized on a scale l much less
than L, we may judiciously take the second condition to apply
at infinity, so that

lim
x→∞ v̂(x) = 0 (12)

replaces the second part of the boundary condition (equa-
tion (11)).

Equation (9) then has a trivial solution that may be
obtained by the traditional methods applied to differential
equations, or simply by inspection or trial solution, as follows.
Finding the solution is complicated only by the existence of
three distinct cases. (Recall that a and b are model parameters,
as yet unspecified, although both are positive. Their values
determine the type of solution to be applied.)

It is immediately evident that, in general, a power law
dependence of v̂ upon x may offer a solution of equation (9).

The ansatz
v̂(x) = (1 − x/x0)

n, (13)

satisfies the boundary condition v̂(x = 0) = 1.
For the case x0 < 0 it is acceptable for all x . We consider

this case first. Substitution into equation (9) shows that the
ansatz is indeed a solution, with the exponent n given by

n = 1 + a

a − b
. (14)

The value of x0 needs to be determined by equating
prefactors, giving

a(n − 1)

x0
k

∣
∣
∣
∣

n

x0

∣
∣
∣
∣

a

= 1. (15)

Since x0 < 0 this requires n < 1, i.e. a < b. The value of
x0 is given by

x0 = 1 + a

a − b

(
a(1 + b)

1 + a
k
) 1

1+a

. (16)

In summary, for a < b, there is a power law solution for
v̂(x) which decreases continuously as x tends to infinity. An
example of such a profile is shown in figure 12.

For x0 > 0, the solution of equation (9) may be developed
as

v̂(x) =
{

(1 − x/x0)
n for x � x0

0 for x > x0
(17)

where n and x0 are again given by equations (14) and (16),
respectively. However, since x0 > 0, equation (16) requires
a > b. In summary, for a > b, the solution v̂(x) deceases to
zero at a point x0, and is taken to be equal to zero beyond that
point. Again see figure 12.

The power law solution fails only for a = b (including
the case a = b = 1, which was the original version of
the continuum model [23]). In this third case the solution is
exponential:

v̂(x) = exp(−x(ak)−1/(1+a)), (18)

which may be obtained from equation (13) by taking the limit
as n tends to infinity (corresponding to (a − b) → 0), or more
directly by substitution.

We see that the indices a and b determine what kind of
solution is found, that is; power law, truncated power law or
exponential, as illustrated in figure 12.

7.3. Definitions and results for localization lengths

What formula for the localization length emerges from these
solutions? There are a number of definitions for the
localization length which might be conventionally associated
with a given velocity profile v̂(x). Firstly, the internal
definition for the case of exponential localization, mentioned
in section 2, may be generalized as

v̂(le) = 1

e
. (19)

(This corresponds to V/e in physical units.) In a similar
manner it is possible to define l1/10:

v̂(l1/10) = 1

10
, (20)

or localization lengths for other fractions.
Alternatively (and equivalently to equation (19) in the case

of an exponential velocity profile) we may use
∣
∣
∣
∣
v̂(0)

/
dv̂

dx

∣
∣
∣
∣
x=0

∣
∣
∣
∣
= l. (21)

In the case a > b, in which v̂(x) vanishes beyond some
point x0, one could use the smallest l for which

v̂(l) = 0. (22)

This might also be applied to the case of Couette geometry,
which in certain cases can provide a profile that vanishes at
some point, even for a � b [24].

For present purposes the two definitions given by
equations (19) and (21) are preferable (with a possible third
candidate which we propose for the first time below), and the
choice between them is rather arbitrary.

10
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The definition provided by equation (21) leads to the
following formula for the localization length, arising out of the
solutions developed above, and happily common to all cases
(i.e. all positive values of a and b):

l =
(

a(1 + b)

1 + a
k

) 1
1+a

. (23)

Recall that k is given by equation (10) and contains a velocity
dependence, so the localization length scales with velocity as

l ∝ V
a−b
1+a . (24)

Note also the incorporation of cv and cd in k: we see that
the localization length increases with cv and decreases with
cd. When cd = 0 (no wall drag) there is no localization. It
is this statement that places the model in stark contrast to the
occurrence of localization in quasistatic simulations, in which
wall drag is absent.

For the case of exponential localization (a = b)
equation (23) reduces to

l =
(

a
cv

cd

) 1
1+a

. (25)

The velocity dependence of equation (23) (contained in k,
see equation (10)) is absent, as was reported in the initial
formulation of the continuum model [23].

Whenever a localization length needs to be extracted from
numerical or experimental data, yet another definition may be
useful, as the integration over a velocity profile reduces the
effect of scatter in the data:

lint =
∫ L

0
v̂(x) dx . (26)

Note that lint has indeed the dimension of a length since
v̂(x) is dimensionless, having been scaled by the boundary
velocity V . Inserting the three different solutions v̂(x) of the
continuum model (equations (13), (17) and (18)) results in
one common expression for the localization length lint. It is
given, in terms of the previous definition of l (equations (21)
and (23)), as

lint/ l = (1 + a)/(1 + 2a − b). (27)

A certain amount of irreducible algebraic clutter should
not detract from the very elementary nature of this treatment.
It was initially developed for the case a = b = 1, leading
to exponential localization, and seemed sufficient to offer
an explanation of the results of Debrégeas et al (section 2).
However, the further experiments that we have mentioned
indicate the need for, at least, the solution that corresponds
to a < b, leading to a decrease of localization length
with boundary velocity. This arose first in the work of
the Leiden group, who investigated numerical solutions of
equation (9) with finite boundary conditions corresponding to
their experiments (section 3.3).

Of course, all of the experiments use finite samples (finite
L). The analytic solution that we have developed is for L →

∞, and nothing as simple as what we have seen emerges for
finite L [26], except for the original case of a = b = 1.
For this, equation (9) is linear and has, for example, the
solution in the form of a sinh function [23], appropriate to the
experimental condition of figure 6 (although it was not in the
end found to be applicable to that experiment).

The main qualitative conclusions of the analysis of the
continuum model—that wall drag induces localization in that
model (and the internal viscous dissipation opposes it) and that
there is a velocity dependence determined by a and b—must
now be brought into closer contact with experiment.

8. Brief comparison with experimental data

Note that from now on we will again refer to the dimensional
velocity v(x).

Let us first of all examine the results which exposed
a velocity dependence of localization. These were first
obtained by the Leiden group, using the apparatus that we
have described in section 3.3. Their model is essentially
equivalent to that of the previous section, but using numerical
methods and the appropriate boundary conditions for two
moving boundaries [28, 30]. (Note, however, that, provided
the two boundary velocities are equal and opposite, half of the
system is equivalent to the standard case that we have chosen,
by symmetry. That is, v = 0 at the midpoint.)

The parameter b was determined by the group as b = 0.67
using an experimental technique developed by the Denkov
group [19]. It consists of measuring the torque that is required
for dragging a confined monolayer of bubbles over a smooth
plate. Using this value for b (for its significance see section 15),
very good agreement with observed velocity profiles was
obtained for the parameter value a = 0.36.

The Leiden group also succeeded in obtaining an
independent estimate of a in reasonable agreement with these
values from shearing their foam in a Couette rheometer and
fitting their data to the Herschel–Bulkley model.

Using the above values for a and b in the continuum
model expression for the variation of localization length with
the velocity at the moving boundary (equations (24) and (27))
yields l ∝ V −0.23. This is the scaling relationship that was
already shown to hold for the Leiden data (see section 3.3,
figure 7).

The further measurements of the group of Dennin added
some further dimensions to our understanding. They showed
that, when a Bragg bubble raft is used, for which no wall drag is
expected, localization is not observed [40]; this is an important
element of support for the continuum model.

In these ways our understanding of shear localization
in 2D foam has progressed considerably, but puzzles have
remained.

• Why does the original Debrégeas experiment show no
velocity dependence? Are we to conclude that a =
b in that foam sample? This remains a possibility—
neither quantity was independently estimated—but it
seems unlikely, in the light of other experiments.
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• What is the significance of the additional feature observed
under some conditions in Couette geometry, namely the
discontinuity of the derivative of velocity profile with
respect to radial position?

• How are we to resolve the apparent discrepancy between
continuum modelling, and the repeated finding of
localization in quasistatic simulations [31–35]? To clarify
this issue once more, note that the V → 0 limit of
continuum theory takes the localization length either to
zero or to infinity, unless a = b, an equality which we
no longer consider to be correct for real foams.

Before returning to some of these matters, we will deal
briefly with the transient regime.

9. Transient and history-dependent effects

In the original analysis of the continuum model [23], the full
time-dependent form of its governing equation (6) was used,
although restricted to the case a = b = 1. Rather than
finding the steady state directly, the time-dependent solution
was examined for the case in which the boundary velocity is
instantaneously increased from zero to the finite value V at
t = 0. Steady shear is suddenly switched on, as in most
experiments. This results in quite a rich scenario, in which the
transient solution goes through various forms before settling
down in the steady state.

Whereas the eventual steady state is described in terms
of a velocity profile v(x), with the displacement profile u(x)

losing any significance, we need to think of both (and indeed
local strain and stress also) when dealing with the transient
behaviour. Velocity and displacement are, of course, connected
by v(x) = d

dt u(x).
Since there has been no detailed experimental engagement

with the transient results, we will describe them only briefly
here, referring to the original reference [23] for various
diagrams that present the detail.

The boundary velocity V is switched on at t = 0, at which
point it is assumed that the system is described by u = v = 0
everywhere, except at the boundary. Its response is described
by the force balance equation which has the form

velocity = F(derivative of strain)

+ G(derivative of strain-rate) (28)

where the functions F and G arise from the ‘elastic–plastic’
and ‘viscous’ terms of equation (6), based on the Herschel–
Bulkley (or in this case, Bingham, for a = 1) relation. It is
possible to interpret the behaviour of the system, as described
by the numerical integration of equation (6) in time, with
simple mathematical arguments based on approximations, as
follows.

Initially the F term vanishes. The equation reverts to
the form of equation (9) which we have previously adduced
to the steady state. Rather paradoxically, the initial solution
immediately ‘jumps’ to the same exponentially localized form,
equation (18).

Within the present theory this jump is instantaneous. This
cannot be physically acceptable. It is presumed that the neglect
of inertia is responsible. The propagation of a change of

Figure 13. The existence of distinct yield and limit stress in the
quasistatic stress–strain relationship allows, at low velocities, for the
coexistence of a static (corresponding to A) and a shearing region
(corresponding to B). Stress at the A/B boundary is the same, due to
the additional dissipative term in the shearing region.

velocity profile on some short timescale may be a feature of
future experimental interest.

Switching on v(x) in this manner entails thereafter the
progressive development of displacement u(x), increasing
from zero, and consequent strain, giving rise to a finite value of
the F term in our equation. For low enough boundary velocity
V , this grows to dominate instead of G, so that the profile of
v(x) and u(x) evolve from an exponential profile towards a
linear form, approximating the quasistatic equilibrium solution
with constant stress and strain for linear elasticity.

This form in turn is undermined by the arrival of the
strain value at which the stress approaches the yield (or limit)
stress. Then the elastic–plastic F term must again diminish
(eventually to zero), G takes over again, and the solution
collapses back to its steady-state form, exponential in the
present case.

This appealing scenario, in which first G, then F , then G
again dominates, has not yet been tested experimentally, but
it does seem to correspond qualitatively to what is seen, for
example, in the video of the original Debrégeas observations2.

More generally one may choose to implement some
experimental protocol in which the boundary velocity V is
some function of time. In the primitive continuum model
that we have described, the steady state is unique. It is
independent of the way in which V has been varied, provided
that it asymptotes to the same value. However, we shall see in
section 10 that this is no longer true when certain refinements
of the model are introduced, and the time-dependent equation
again becomes important.

One caveat must be continually borne in mind: the
equations given up to this point do not admit a reversal of
the sign of the local strain rate anywhere. This is not just
conventional: hysteretic effects need to be included in the more
general case.

10. Distinct yield and limit stresses

In this section we introduce an additional factor which seems
necessary to fully account for the experiments. It has been

2 http://tel.archives-ouvertes.fr/docs/00/04/56/98/HTML/Manip.mpg,
we thank A Kabla for this link.
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Figure 14. Coexistence of sheared and static regions is possible
when yield and limit stress are distinct (cf figure 13).

recognized for a long time that the (local) yield stress, at which
continuous shearing commences, is slightly greater than the
eventual limit stress. This was already sketched in figure 8.

In previous sections this feature was not incorporated in
the model. Instead the local stress was taken to be a monotonic
function of strain and there was no distinction to be made
between local yield and limit stresses.

Important qualitative consequences follow from having
distinct yield and limit stresses. Figure 13 provides an
immediate picture of what is suggested here—the coexistence
of static and shearing region with the same stress at the point
of transition from one to the other. The effects, which are most
marked below a critical boundary velocity defined below, are
as follows.

• The steady state may include a part which is static,
coexisting with a shearing region.

• The derivative dv
dx is finite at the boundary between

shearing and static regions (see figures 5 and 14).
• The steady state is no longer unique, but rather is

dependent on history, that is, the previous variation of the
boundary velocity V .

The coexistence illustrated by figures 13 and 14 is not to
be confused with that which was encountered earlier for the
solution of the continuum model in the (so far unphysical) case
a > b. In the generalization of the continuum model that is
considered here, it may occur for a � b and indeed is not
much dependent on the details of the model.

Nor is it to be confused with a similar effect for Couette
geometry [24], which is induced by the circular geometry. The
first clue to the necessity to refine the model was nevertheless
provided by the experiments of the group of Dennin [42, 43]
which had circular Couette geometry. An additional feature
emerged, not predicted by that model—the finite first derivative
dv
dx at the edge of the shearing region to which we have just
referred. Revisiting the original derivation of the continuum
model, one may directly rule out this effect within that
model, by considering the balance of forces at the point in
question, separating moving and static regions. In due course,
it was shown by the Dublin group [63] that replacing the
elastic/plastic shape function f (u) by one which had distinct
yield and limit stresses, and proceeding as before, allowed the
required feature. This interpretation was as given in figure 13.
There must be equal stresses on the two sides of the boundary

Figure 15. The shaded regions correspond to allowed values of
localization length l as a function of boundary velocity V , as given
by continuum theory with distinct values for yield and limit stress.
For this illustration exponents a and b are set to a = 1, b = 1 (top)
and a = 0.5, b = 1 (bottom). In both cases the difference between
yield and limit stress � was set to � = 1. Vc, as given by
equations (30) and (31), respectively, serves as a rough estimate of
the value of boundary velocity below which there is a wide range of
possible solutions.

point between shearing and static regions, and these values
correspond to the two points A and B on the diagram.

In further pursuing this phenomenon, we shall revert to the
straightforward case of simple shear geometry, and ask: what
solutions of this kind, as in figure 14, can exist for the given
boundary velocity V ?

The stress matching illustrated by figure 13 can be
accomplished for any stress value lying between the limit and
the yield stress, by introducing the appropriate value of dv

dx at
the boundary point xB. The solution is therefore not unique. In
further discussing this, we take the sample width L to infinity,
as before.

Recall that we have at our disposal the exact solution for
v(x) in the limit stress regime, from equation (9). This has
a single disposable parameter which was previously fixed by
the condition v → 0 as x → ∞ (the condition v(0) = 1
still holds). But now we can instead allow v to go to zero at
a point xB, as in figure 14, proceed to examine the value of dv

dx
at that point and apply the condition that stress is a continuous
function of x . The solution may be stitched together at this
point, provided that the viscous stress term is not too large,
that is, provided that

cv|γ̇ (xB)|a � (yield stress − limit stress), (29)

13
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Figure 16. In the absence of wall drag, localization may occur due to
the difference � between the values of yield and limit stress. The
resulting linear velocity profile is localized at a length l between lmin

and L (see equation (33) and figure 17).

at the point in question, where v is zero. For convenience, let
us refer to the right-hand side of equation (29) as �. There is a
continuous range of possible solutions defined by the above
equation. For each of these we may define a localization
length l, in terms of the derivative of v at x = 0 (equation (21)).
The range of allowed solutions is illustrated by figure 15 in
terms of l, for the primitive (a = b = 1) continuum model,
and another example (a = 0.5, b = 1).

In each case the upper curve l+(v) corresponds to xB →
∞, and it is identical to the solution found in the earlier version
of the model, with yield stress being identical to limit stress.

The lower curve l−(v), in which shear is most localized,
has shearing and static regions (as have the solutions between
the two bounds). This corresponds to equality in equation (29).
Note that it needs to be calculated numerically [50].

The range of possible solutions is large for low V , that is,
for

V < �/
√

cdcv, (30)

as may be estimated by making a linear approximation for the
lower values of l close to V = 0, and finding the intersection of
this with the upper curve. This value is for the primitive model
(a = b = 1). For the general model it is given by [50]

V < �
a+1

a(1+b)

(
a(1 + b)

1 + a

) 1
1+b

(
1

cd(cv)
1
a

) 1
1+b

. (31)

Having established this range of possibilities, we return to
the question: which solution is selected in an experiment?

This question has not yet been fully answered, but
calculations with the time-dependent model (for Couette
geometry) have suggested that the eventual steady state
is history-dependent [63]. The implications for future
simulations and experiments are clear: the protocol of V (t)
should be varied in search for these solutions, by arriving at a
steady state for constant V in different ways.

Before pursuing the course of detailed simulations which
incorporate dissipation due to wall drag, in the next section we
demonstrate that a localized solution of the kind shown above
can be constructed, even if the wall drag is absent.

Figure 17. The shaded region indicates possible values for the
localization length l as a function of boundary velocity V in the
absence of wall drag. Localization does not occur for values of
boundary velocity V exceeding Vc = L( �

cv
)1/a .

11. A mechanism for localization in the absence of
wall drag

The present analysis has further implications for addressing the
key question: why are finite values for the localization length
found in quasistatic simulations [31–35] when the standard
continuum theory predicts otherwise? Here we will show that
localization does not depend on the existence of wall drag, and
hence applies in three dimensions also, provided that there are
distinct yield and limit stresses.

Since the local viscous drag force per unit area is balanced
by the gradient of local stress, in the absence of viscous drag
(cd = 0), stress is constant across the sample. This implies
cv| dv(x)

dx |a = const., leading to the following linear velocity
profile:

v(x) = V (1 − x/ l) (32)

where l is the localization length as defined by equation (21),
as in figure 16.

As in the previous section, we may ask ourselves: for
a given V , what range of localization lengths is possible
for solutions of the form of equation (32)? Clearly, the
maximum possible localization length l is the system size
L. The corresponding lower bound to the range of possible
localization lengths is given by cv|γ̇ |a = � (see equation (29)).
Since |γ̇ | = V/ l (see figure 16) this leads to lmin � l � L with

lmin =
(

cv

�

)1/a

V . (33)

The region of possible localization lengths is shown in
figure 17, being bounded above by L, the size of the system.

Note that this analysis also suggests that, in the quasistatic
regime, the sample may adopt any localization length between
zero and the system size L, consistent with the quasistatic
simulation results [31–35] performed to date. We contend that
the effect of distinct yield and limit stresses is one possible
mechanism for shear localization in the absence of wall drag.
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Figure 18. Sketch of the forces acting on a soap film in the viscous
froth model. In a computer simulation such a curved film is
approximated by straight line segments and equation (34) is applied
to the end points of the segments, with the exception of the vertices.

An argument which seems to point in the same direction is to
be found in the original paper of Kabla and Debrégeas [31].

These arguments can be extended to 3D (where there
is never any force analogous to wall drag present), thereby
offering a mechanism for shear localization in this case. A
detailed discussion of this phenomenon, however, lies outside
the scope of this review article.

We therefore return to the question: what determines the
allowed range of localization lengths in a 2D foam in the
presence of wall drag? This will be pursued using detailed
simulations that include dissipation, such as the viscous froth
model [56] and the soft disk model [27]. To review all that has
been done and is ongoing with such simulations would take
us too far afield. Instead let us give some pertinent examples
of recent results in the next two sections, providing some
comparison with the continuum model.

12. Some relevant results of the 2D viscous froth
model

12.1. The model

The 2D viscous froth model was formulated quite some time
ago by one of the present authors as a ‘toy model’ of primarily
theoretical interest [64, 65]. It formed a bridge between two
elementary physical models that had become standard: the
quasistatic equilibrium model of a dry 2D foam and the model
of curvature-driven growth of a 2D cellular structure. Indeed it
contains each of these, in different limits [56].

As is so often the case, this idealized conception, initially
supposed to be physically unrealistic, turned out to have a
significant physical realization. It is now a useful starting point
to describe the dynamics of 2D foams and related microfluidic
systems [56, 66].

The model turns the traditional static cellular model of a
2D foam, in terms of a surface tension σ and cell pressures p,
into a dynamic one, by adding a viscous drag on a soap film

(cell boundary), proportional to its local normal velocity. This
is the ‘wall drag’ to which we have repeatedly referred in this
article, but here it relates to the detailed local motion of the
soap films, rather than the average local speed of these films,
as in the continuum model.

The equation of motion of a point s on the line
representing a soap film is given by

λv⊥(s) = �p − σ K (s) (34)

where λ is the drag coefficient, v⊥(s) is the velocity in the
direction normal to the boundary at s, �p is the pressure
difference between two neighbouring bubbles, σ is surface
tension and K (s) is the local curvature, see also figure 18.

12.2. Relationship to continuum model

The viscous froth model is a natural candidate for a dynamic
simulation of 2D foam rheometry, and this has been undertaken
by Barry et al [50]. We will summarize results in section 12.3.

We shall see that localization is found using this model.
The results bear some relation to those of the continuum model,
so that it is reasonable to ask: can the two models be related?
At first, one is tempted to conclude that, if the viscous froth
model is to be transposed into an equivalent continuum model,
the latter can contain only the wall drag term, and not the term
which represents internal dissipation in the Herschel–Bulkley
relation. This would imply essentially zero localization length,
for all V . The results will suggest otherwise.

We first address the wall drag term, in trying to find the
continuum equivalent of the viscous froth model. A local
linear drag law in the viscous froth model will give b = 1
in the continuum model, according to any simple averaging
procedure. Also the drag constant cd of the continuum model
can be expressed in terms of λ of the viscous froth model.
This requires appropriate averaging procedures that take into
account the number of cell walls per area and their average
orientation [50].

The case of the index a is altogether more problematical.
The results will suggest that a is approximately 0.3 in the
equivalent continuum model ([50] and figure 21). We believe
the interpretation of this is to be found in the concept of
‘relaxation stress (or strain)’, which has been introduced in the
context of foams by the Leiden group [29].

In the simulations, as in our previous analysis, shear is
imposed on the foam by moving one boundary at velocity V ,
while the opposing boundary (at distance L) is kept fixed. Soap
films in contact with any of the boundaries remain in contact
throughout the simulation, corresponding to no-slip boundary
conditions. The overall (nominal) shear rate γ̇ is thus given by
γ̇ = V/L.

The immediate interest of the results may lie just as
much where they conform to expectations based on elementary
continuum theory as where they do not. For low boundary
velocity there are discrepancies, which we believe are
attributable to two causes.

We have already signalled one of these effects, that due to
the difference of yield and limit stress (section 10). Secondly,
as the effect of the drag term becomes less, the effect of
disorder may become more significant, in that the yield stress
may be considered to have a spatial variation.
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Figure 19. Snapshots of a shear simulation using the viscous froth model. The cell numbers help in identifying topological changes. The
foam is periodic in the direction of applied shear.

12.3. Results of computer simulations

Expressing the Herschel–Bulkley relation in terms of the
parameters of the viscous froth model leads to [50]

S − SY ∝ (λV )a . (35)

It is thus the product of drag coefficient λ and boundary
velocity V that plays an important role when interpreting
the results of the viscous froth shear simulations with the
continuum model.

Simulations were performed on five different foam
samples of similar cell area distributions, each consisting
of 100 cells, and generated using the Surface Evolver
software [67, 68]. Shear is applied by moving the top
boundary incrementally at each time step and then computing
the resulting movement of all cell boundaries by use of
equation (34). A velocity profile of the flowing foam is
obtained by averaging the horizontal displacement of cell
centres. The simulation is taken to have reached a steady
state when the velocity profiles no longer appreciably change
as shear is increased (this was found to require less than an
applied strain of one). Steady-state velocity profiles were then
averaged for values of strain between 1 and 10 and it is these
steady-state profiles that were analysed for comparison with
continuum theory.

The simulations exhibit clear evidence of localization, as
indicated by figure 19, where the displacement of bubbles 1–
4 in the direction of imposed shear is contrasted with that of
bubbles 5–10 which, on average, do not move. The region of
localization of flow is almost always found to occur next to the
moving, as opposed to the static, boundary.

Typical velocity profiles from simulations are shown
in figure 20 for different values of λV , the product of
drag coefficient λ (see equation (34)) and boundary velocity.
Localization increases with λV . (This is not the case for
simulations of monodisperse foams where the localization
length is found to be one bubble diameter, independent of λV .
Note that this is similar to experimental findings for sheared
monodisperse foams, see section 3.)

Figure 20. Velocity profiles obtained from individual viscous froth
simulations using a sample of 100 cells. Increasing the product of
drag coefficient λ (see equation (34)) and velocity V of the moving
boundary leads to localization near the moving boundary of the foam
sample. Localization lengths can be extracted by integrating the
profiles over the entire sample width, see equations (26) and (27).
The distance from the moving boundary is expressed in multiples of
the square root of the mean cell area Ā.

The analytic form of the velocity profiles of figure 20 is
hard to discern from the existing simulations, due to the small
system size. Future computations involving larger numbers of
bubbles may be more illuminating. However, it is noted that the
profiles have an approximately linear form before a subsequent
tail-off.

The scatter in the data makes the integral definition
(equations (26) and (27)) the best choice for computing a
localization length l. Figure 21 shows the variation of l
with λV . For small values of λV there is a wide variation
of the localization length l, as computed for five different
realizations of foams each containing 100 cells and having a
similar distribution of cell areas. As λV increases the range of
l values narrows.

How can we account for this rich behaviour? We contend
that the idea of distinct yield and limit stresses, as discussed
in section 10, can provide answers. Figure 21 is qualitatively
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Figure 21. Localization length, computed for five different foam
samples, each containing 100 cells and having a similar second
moment μ2(A) of the cell area distribution (μ2(A) = 0.13 ± 0.002).
The shaded region indicates the allowed region for the localization
length as given by the continuum theory for the case of distinct
values for yield and limit stresses. It has been computed by setting
the Herschel–Bulkley exponent a = 0.3 and the difference between
yield and limit stress to � = 0.11σ Ā−1/2. (λV )c = 0.056σ Ā−1/2 is
an estimate of the value above which the localization length becomes
essentially independent of (λV ), cf figure 15. (σ denotes surface
tension and Ā is the mean cell area).

similar to figure 15(b) and supports the assertion that, for
low velocities, the localization length can take on any value
between zero and infinity.

The upper bound for localization lengths l+(V ) (see
equation (23)) can be expressed as a function of λV by using
the relevant expressions of cd and cv for the viscous froth
model. Similarly, an expression for the rough estimate for the
critical value of λV can be found, below which localization
can essentially occur anywhere in the sample (based on
equation (31)) [50].

Figure 21 shows upper and lower bounds l+ and l−
that look consistent with the results from the viscous froth
simulations. They were obtained by setting the Herschel–
Bulkley index to a = 0.3 [50] and illustrate a tentative
establishment of a relationship between continuum and viscous
froth model, for a = 0.3, b = 1.

Figure 22. Snapshot of a shear simulation using the disk model. In
the example shown the bubbles are confined between a static
boundary at y = 0 and a moving boundary at y = H [27]. The
simulation uses periodic boundary conditions in the x direction only.

Figure 23. Overlap �i j between two contacting bubbles of radii Ri

and R j , located at ri and r j , respectively.

13. Some relevant results of the soft disk model

Durian used a simpler, non-cellular, representation of a 2D
foam, in which the bubbles are represented by overlapping
disks [7, 8], as shown in figure 22. This ‘toy’ model (equally
applicable to certain granular materials) is easy to program
and lends itself readily to incorporation of ad hoc elastic and
dissipative forces, and hence to rheology. We will call it the
soft disk model for present purposes.

The model has been revisited by Langlois et al [27],
and others, with startling conclusions. It appears that the
approximations made by Durian and others in the very early
attempts at such a simulation were such as to render some of
the results erroneous.

The simulation of Langlois et al [27] uses elastic and
dissipative forces that depend only linearly on displacements
and velocities. The reasonable expectation would then be that
a = 1 should be found (as Durian did), but the new calculations
give values of a much less than unity. And the reason cannot
lie in the forces themselves.

13.1. Definition of the model

The forces in the soft disk model are as follows. When two
disks (representing two bubbles) overlap (and only then) they
interact via a simple spring force, the displacement of the
spring being the radial overlap (see figure 23).

The elastic repulsive force Fn acting on bubble i (centred
at ri , with radius Ri ) due to bubble j (centred at r j , with radius
R j ) is then given by

Fn = κ
2R0

Ri + R j
�i j ni j . (36)

Here κ is the coefficient of elasticity, nij is the normal
vector between bubbles i and j :

ni j = ri − r j

|ri − r j | , (37)

and the overlap �i j is given by

�i j =
{

(Ri + R j ) − |ri − r j | if (Ri + R j ) < |ri − r j |
0 otherwise

(38)
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Figure 24. (a) Stress on the moving boundary as a function of the Deborah number De = γ̇ cb/κ (equation (41)). The solid line is a fit to
equation (4) (re-expressed in terms of De), resulting in the Herschel–Bulkley exponent a = 0.54 ± 0.01. In (b) we have subtracted the fitted
value of the yield stress SY from the data to show the power law behaviour in a double logarithmic plot.

(see figure 23). The ratio 2R0
Ri +R j

in equation (36), where R0

is the average bubble radius of the entire bubble packing,
takes into account that larger bubbles are easier to deform than
smaller ones.

A real flowing foam dissipates energy by viscous friction
in the films and plateau borders separating the bubbles. The
simplest expression, as used by Durian [8] and [27], represents
the viscous force Fb on bubble i associated with a neighbouring
bubble j as

Fb = −cb(vi − v j ) (39)

where cb is the dissipation constant for the bubble–bubble
interaction, and vi and v j are the respective bubble velocities.

Wall drag in the case of a foam confined between two
plates adds an additional force on all moving bubbles. It is
given by

Fwd(r) = −cwd|v(r)|b v(r)
|v(r)| , (40)

where cwd is the wall drag constant. The exponent b = 1 in the
simulations of Langlois et al [27].

13.2. Deborah number

The Deborah number is a dimensionless quantity that is
often used in rheology. It is the ratio of a characteristic
time associated with shear and some time characteristic of
the relaxation of the material [69]. Its explicit definition
depends somewhat on convention, since the ‘relaxation time’
could be interpreted or estimated in various ways, and the
appropriate definition may vary according to the regime under
consideration. One should be cautious, therefore, in asserting
any immediate significance to a particular realization of the
Deborah number.

In the case of the bubble model without wall drag the
Deborah number De was defined as [7, 27]

De = γ̇
cb

κ
. (41)

Whenever wall drag is present which depends linearly on
bubble velocity (b = 1 in equation (40)), the following

Figure 25. Normalized velocity profiles in the foam for various
values of the ratio χ = cb/cwd of dissipation and wall drag constant
(defined in equations (39) and (40), respectively). The localization of
the shear on the moving wall increases as wall drag is increased,
i.e. with decreasing χ . The solid lines, which agree closely with the
data, were obtained from numerical solutions of the continuum
model, equation (9), for values of a = 0.54 for the Herschel–Bulkley
exponent and b = 1 for the exponent of the drag force [27].

extension:

De′ = γ̇
cb + cwd

κ
, (42)

appears more appropriate since it takes into account the wall
drag contribution to the local relaxation time which can be
taken as the timescale of individual bubble rearrangements.

13.3. Results

Computer simulations of the soft disk model, as defined in
section 13.1, were performed by Langlois et al [27]. These
simulations of assemblies of up to 10 000 disks show that, in
the absence of wall drag, the bubble model exhibits a Herschel–
Bulkley relationship under applied shear with an exponent
a = 0.54 ± 0.01 (figure 24). Adding wall drag (according to
equation (40)) leads to flow localization, as shown in figure 25,
thus confirming the crucial role that this drag force plays in 2D
foam rheology.
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Figure 26. Normalized localization length λ1/10/R0 as a function of
the Deborah number (and using the definition of equation (20) for the
localization length). The solid line is a fit of the data to a power law,
resulting in λ1/10/R0 = 0.87De−0.30, in excellent agreement with
theory. (Here the sample width was 28 R0 where R0 is the mean
bubble radius.)

Localization lengths l1/10 were extracted from such data
as the distance away from the moving boundary where the
velocity has decayed to 1/10 of that at the boundary; see
equation (20). Figure 26 shows the variation of l1/10 as a
function of Deborah number De (as defined in equation (41));
the data is well described by a fit to a power law with l1/10 ∝
De−0.30. This scaling is in excellent agreement with the
prediction of the continuum model which gives l ∝ De

a−b
1+a (by

use of equations (23) and (10)). Using the determined value
of the Herschel–Bulkley index, a = 0.54, and the wall drag
exponent, b = 1, of the bubble model indeed gives the above
scaling relation with exponent −0.30. Note that there is no
free/adjustable parameter in the theory.

In summary, the bubble model simulations have provided
remarkably good support for the validity of the continuum
model. In addition, the soft disk model was used to explore the
question of the significance of the Herschel–Bulkley relation.

14. The interpretation of the Herschel–Bulkley
relation

We have seen that the soft disk model has shear localization
properties broadly consistent with those of the viscous froth
model, the continuum model, and with experiments on real 2D
foams. We have noted, however, that the value of the Herschel–
Bulkley index a that is required to establish conformity to the
predictions of the continuum model is intriguing. Since only
linear dissipative forces are incorporated in this version of the
disk model, a linear viscous term is rather to be expected,
i.e. a = 1, the Bingham model. Instead, values of a 	 0.54
were found in the simulations of [27]. Recall that also the
Leiden group found such nonlinearity; their experimental data
was best described by a = 0.37 [28], which they could confirm
independently. Nonlinearity (a = 1/2) arises also out of the
recently introduced ‘kinetic elastoplastic’ (KEP) model for the
flow of soft matter with granularity, which incorporates the key
features of flow, namely global elastic deformations and local
plastic rearrangements [70].

Let us first rehearse the argument that suggests that the
observed values of a are anomalous. At least for low shear
rates, it is natural to expect some quasistatic regime in which
the detailed motion of the constituent bubbles remains the
same, merely speeding up as the shear rate is increased.
Topological changes are effectively instantaneous. Then if the
viscous forces are linear in velocity, surely the total or average
stress resulting from them must also be linear in the strain rate?
The soft disk calculations, having been pursued over three
orders of magnitude in strain rate, show that this argument fails.

One seems forced to conclude that the motion of the
bubbles is complex [71] and varies in some more singular way,
as shear rate decreases to zero. This notion resonates with what
has been said about granular materials (e.g. Goldenberg [72])
from time to time.

In the case of the experimental data, complex dynamics is
not the only explanation on offer. The group of Denkov [19],
in particular, contends that the Herschel–Bulkley index simply
corresponds to that of the local viscous forces. Indeed it is
well established that neither the wall drag force nor internal
dissipative forces scale linearly. Moreover, the power law
indices that they entail depend upon the type of surfactant.
Chemistry is not irrelevant!

At the time of writing, this debate is proceeding. What
combination of the form of local forces and complex dynamics
is responsible for the value of a in each particular case? We
leave it here, but will review the forms of the local forces that
have been forced upon our attention.

15. The forms of local forces

It is sometimes remarked that the forces that operate in a foam
are simple. In general this is hardly true. Certainly it cannot be
said of the dissipative forces that operate in dynamics. And
even the elastic force is awkward in the apparently simple
model of interacting disks, discussed in section 13, if it is to
bear some relation to reality. The simple form used in the soft
disk model, a pairwise Hooke’s law force acting upon contact,
is certainly not strictly correct near the ‘jamming’ transition of
bubbles, or for that matter of elastic particles [73, 74]. But our
principal concern here is with the two types of dissipative force
which lie behind two of the terms in the continuum theory.
Neither takes the obvious elementary form, linear in velocity.
We come at last to the significance of a and b.

The force associated with the sliding of bubbles along a
smooth surface which is wetted by the solution is associated
with the name of Bretherton [57] who performed an early
theoretical analysis of the problem and succeeded in deriving a
power law for the force as a function of velocity:

F ∝ vn . (43)

More recent studies, with less approximations and
more computation, reach similar conclusions, except that
a distinction is made between mobile and immobile
interfaces [19], for which it would appear that

n = 2/3 (mobile)

n = 1/2 (immobile).
(44)
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Various experiments confirm these indices: recall that n
was directly measured in the Leiden experiments for mobile
surfaces (section 3.3), resulting in n = 0.67 ± 0.02. Some
uncertainty remains over the mobile/immobile distinction and
the range of validity of these nonlinear forms.

The form of local dissipative forces that act internally is
much less clear—indeed their very origin is disputable. It is
addressed in the recent work of Denkov et al [21].

16. Comparison with granular matter

Foam may be seen as a prototype for a wide class of complex
fluids. The flow of granular materials is of particular interest
at present, and bears at least a superficial resemblance to that
of foam [75]. Continuum descriptions have not been generally
favoured, but have been advocated by some, e.g. [76].

2D rheological measurements in granular material have
been undertaken by Behringer [77], displaying localization that
is superficially similar to that seen in 2D foam.

To analyse the complex of ideas that is adduced in the case
of granular media would take us too far afield. See, e.g., [78].
Suffice it to say here that the perceived gulf between foamy and
granular systems seems to be shrinking and the results that we
have reviewed here may soon find applications to grains.

17. Conclusion

The general continuum model has proved to be rich in its
implications, despite its simplicity. These have included
shear localization, its velocity dependence, the non-uniqueness
of solutions, history dependence and interesting transient
behaviour. The model has proved to be consistent with several
experiments and awaits further testing. Its precise relation to
quasistatic simulations remains to be defined.

The essential message is very straightforward: wall drag
(a general but not inevitable feature of the 2D foam) entails
localization. However, its effects may be modified at low
boundary velocities, for which the difference of yield and
limit stresses becomes significant and indeed can localize shear
in the absence of wall drag. We attribute localization in
quasistatic simulations to this effect.

In three dimensions there is no obvious counterpart of wall
drag. For the explanation of localization in 3D (which is not
confined to boundaries) other explanations must be sought.
The present work does contain one. Again it is the effect of
the yield/limit stress differences (see section 10), but there are
surely others.

The study of localization has provoked some of the recent
debate on the significance of the power law in the Herschel–
Bulkley relation (section 14). In this respect the 2D foam has
fulfilled its old promise, to provide a transparent test-bed for
ideas and experiments that carry much wider implications.

Finally let us acknowledge another large body of work
that has not been included here, though it has been closely
associated with some of the experiments and quasistatic
simulations that we have mentioned. It relates to the detailed
role of topological changes in rheology. Once an interpretation
of continuous shear is sought at the cellular level, it is

to be found in the local rearrangements that take place.
Rather than fracturing or otherwise degrading, the foams
cells constantly rearrange. At low rates of shear, individual
events (‘T1 processes’ [79]) consist of simple neighbour-
swapping [80]. The pursuit of the statistics of these events and
their correlations [54, 81, 31, 35, 36, 50, 82, 55] is an attractive
route towards deeper interpretations of some of the topics we
have discussed.

Given its seminal role in the development of this subject,
we should return to the Debrégeas experiment, the findings of
which were summarised in section 2. A realistic continuum
theory (a 
= b) cannot account for the detailed results,
especially that of exponential localization, which was clearly
established by the data. The clue to the resolution of this
discrepancy may lie in the recent introduction of nonlocality
effects, mentioned in section 4. What do they imply for the
form of localization in 2D, due to wall drag? The nonlocality
theory leads to a constant fluidity f (the ratio of stress to
strain rate, hence an effective inverse viscosity) over a finite
range ξ close to the moving boundary. The continuum theory
may be modified to include the effect, and must in the case
defined lead to exponential localisation. Possibly the eventual
reconciliation of this experiment with continuum theory may
lie here, in whole or in part.
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